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Abstract—Remote atomic memory operations are critical for
achieving high-performance synchronization in tightly-coupled
systems. Previous approaches to implementing atomic mem-
ory operations on high-performance networks have explored
providing the primitives necessary to achieve low latency and
low host processor overhead. In this paper, we explore the
implementation of atomic memory operations with a focus
on achieving high message rate while maintaining these other
desirable characteristics. We believe that high message rate
is a key performance characteristic that will determine the
viability of a high-performance network to support future multi-
petascale systems, especially those that expect to employ a
partitioned global address space (PGAS) programming model.
As an example, many have proposed using network interface
level atomic operations to enhance the performance of the HPCC
RandomAccess benchmark. This paper explores several issues
relevant to the design of an atomic unit on the network interface.
We explore the implications of the size of the cache as well as the
associativity. Given the growing ratio of bandwidth to latency of
modern host interfaces, we explore some of the interactions that
impact the concurrency needed to saturate the interface.

I. INTRODUCTION

The constant advancement of silicon technology in accor-
dance with Moore’s Law has provided dramatic advances in
microprocessor performance. At the same time, it has opened
the door to extending the functionality of the network interface
in high performance computing systems. For example, the
Cray SeaStar[1] [2] and Quadrics Elan[3] [4] interconnects
include processors that are capable of offloading message
processing. Recent proposals have included other hardware
constructs to enhance the performance of message passing
offload[5] [6].

Another common construct on high-end network interfaces
is a hardware unit to provide low latency, remote atomic
memory operations. Atomic memory operations form the basis
of numerous approaches to synchronization[7] and, as such,
are important to the successful use of the emerging partitioned

#This work was performed while Keith Underwood was a staff member
at Sandia National Labs.
∗Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lock-
heed Martin Company, for the United States Department of Energy’s National
Nuclear Security Administration under contract DE-AC04-94AL85000.

global address space (PGAS) programming model. Languages
like UPC[8] and Co-array Fortran[9] enable fine-grained com-
munications, which ultimately increase the need for fine-
grained synchronization and the performance of atomic op-
erations upon which they are built. As the number of cores
in high end systems grows exponentially in the multi-core era
— perhaps reaching one million cores in near term petascale
systems — the rate of atomic memory operations will become
as critical as the latency. With the bandwidth of modern
systems growing far more rapidly than latency is decreasing,
several challenges arise for the design of an atomic memory
unit on the NIC. Challenges include how to design a pipelined
atomic unit that exposes concurrency without exposing data
hazards as well as how to implement an efficient NIC side
cache to cover the latency to the host memory. This paper
explores how to address these challenges with the architecture
in Section III and the appropriate size and organization of an
atomic unit cache.

A second motivation for an atomic unit on the network
interface is the type of operations represented by the HPC
Challenge (HPCC) RandomAccess benchmark. While the Lin-
pack benchmark[10] has long been the basis of the Top 500
listing[11], it has been identified as overly biased toward
one feature of system performance (dense matrix floating-
point arithmetic). In response, the broader HPC Challenge
(HPCC) Benchmark Suite[12] has been introduced to broaden
the assessment of system parameters to range from memory
bandwidth (STREAM) to network performance. One partic-
ularly interesting member of the HPCC Benchmark Suite is
the RandomAccess benchmark, which embodies the longer-
standing “Giga-Updates Per Second (GUPS)” benchmark.

The RandomAccess benchmark generates a series of ran-
dom integers that specify system-wide memory locations to
update; thus, each update is an 8-byte XOR to a random
memory location on a random node. To allow system imple-
menters some flexibility while attempting to maintain the spirit
of the benchmark, the RandomAccess benchmark allows up
to 1024 outstanding updates per thread. The result is small,
random updates that test a variety of network and system char-



acteristics, including the rate at which the network interface
can handle small messages, the overhead of the network, and
the overhead imposed by caching systems on the node. The
relatively high overhead and low message rate of traditional
distributed memory MPPs has led to novel implementations
of the benchmark on high-end systems [13], [14] that were
designed to better aggregate messages. If, however, sufficient
message rate is provided by the platform, the benchmark can
perform quite well using a baseline-like implementation[15].

An alternative mechanism to accelerate the RandomAccess
benchmark is to use a unit on the network interface (NIC)
that performs atomic operations. Such a unit would avoid
the typical need to write incoming messages into memory
— a process that consumes a substantial amount of precious
memory bandwidth. However, the RandomAccess benchmark
is extremely sensitive to message rate and an atomic unit on
the NIC will require that items to be updated be read by the
network interface and consume precious bus bandwidth. As
the correct solution is not obvious, this paper examines the
trade-offs associated with moving the operations associated
with the RandomAccess benchmark to the network interface,
along with some of the relevant atomic unit design parameters.

In the next section, we present previous work in the area.
Following that, Section III presents the atomic unit that was
modeled and Section IV presents the simulation methodology.
The results are presented in Section V, and then compared
to theoretical bounds in Section VI. Finally, conclusions are
presented in Section VII and the paper closes with future work
in Section VIII.

II. BACKGROUND

Atomic memory operations (AMOs), such as fetch-and-
increment and compare-and-swap, are a fundamental capabil-
ity for shared memory processors that provide scalable syn-
chronization primitives for cooperating processes [7]. Shared
memory-based parallel processing machines have provided
this capability as a fundamental component of the memory
and caching subsystem.

In the early 1990’s, as the popularity of distributed shared
memory (DSM) machines [16] began to increase, remote
AMOs were implemented on several machines, such as the
Cray T3 [17] series and the Meiko CS-2 [18], to enable
efficient synchronization and coordination of processes in a
networked environment. The Cray SHMEM [19] library was
one of the first popular network programming interfaces to
support a variety of remote memory AMOs and expose this
capability to the user. See [20] for a complete discussion of
the implementation and evaluation of AMOs on several DSM
systems. Today, large-scale global shared memory machines,
such as the Cray X1 [21] and Black Widow [22], carry on this
tradition of supporting AMOs in hardware.

Commodity high-performance networks that followed these
proprietary systems also began to include support for remote
AMOs. Networks such as the Quadrics Elan [3], Scalable
Coherent Interface [23], and, more recently, InfiniBand [24]
have included hardware support at the network interface level
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for implementing remote AMOs. In addition, the programma-
bility of the Myrinet [25] network allowed for an efficient
implementation of remote AMOs by enhancing the firmware
running on the network adapter [26].

This paper is unique in that it is the first effort to explore
high message rate AMOs in a modern system context, where
the bandwidth to the host processor continues to grow and the
latency is rapidly approaching a lower bound. As such, we
focus on issues of exposing concurrency and implementing
caching in such a way as to allow a stream of AMOs to
approach the bandwidth of the host bus. This requires care
in the design of both the AMO functional unit as well as the
cache on the network interface.

III. ATOMIC UNIT ARCHITECTURE

This section describes the high-level architecture of the
atomic unit as shown in Figure 1. Atomic operations received
by the NIC are directed to the atomic unit (routing path not
shown in the figure), which makes a request of the local cache
for the data value to update. If the request misses the cache, the
cache requests the data from the host. The ALU then updates
the value and writes the result back to the local cache. If
requested, the updated value is also returned over the network
to the requester.

The local cache is configured in write-through mode: every
value written to the cache from the functional unit is imme-
diately propagated to host memory. While this sounds like
an unusual configuration (most processors use a write-back
cache to obtain higher performance), it is actually intended
to simplify the NIC-to-host interaction while maintaining
performance. For example, a local read of a local variable that
is updated by the atomic unit should only go to local memory.
A write-through cache provides immediate updates to the host
and eliminates the need to have something like a timer per
cache line to ensure that the line is eventually visible to the



host. However, it is still desirable to reduce the bandwidth
requirements on the host link, when possible. To accomplish
this, a rate-limiting atomic unit is used.

A. Rate Limiting Atomic Unit

Frequently, there is a small number of target addresses (e.g.
locks) used for atomic operations. A configurable timeout on
the cache could be used to leverage this fact to condense
multiple atomic operations into a single host transaction.
However, if the interval between two operations is never
greater than the timeout, the result would never be written
to the host. Switching to a write-through cache eliminates
this challenge, but still allows the atomic unit to leverage the
network access pattern.

The atomic unit operates by separating cache requests from
the actual operations (see Figure 1). The issue unit translates
operations into a stream of cache requests that cause the cache
to generate a queue of values back to the issue unit. Once
the data is available, the request can be issued to the ALU.
This arrangement opens up many possibilities for limiting the
rate at which data is written back to the cache, and therefore
to the host. Specifically, host writes are limited by executing
multiple operations that target the same address and arrive in
close temporal proximity before writing the result to the cache.
Three resources are needed to accomplish this. First, the issue
unit is provisioned with logic to look at a window of requests
(referred to as the look-ahead window) that have backed up
at the input to the atomic unit. Second, a small register file
is needed to hold intermediate values. Third, a method for
tracking busy cache entries is needed. A cache entry is busy
if it has been read and not yet written back (either to the cache
or the register file).

To condense the host traffic, the issue unit is allowed to
rewrite the source or destination of an atomic request. A
write to the register file (rather than the cache) is made if
an operation in the look-ahead window targeted the same
address as the current operation. A later instruction targeting
the same address would then use the temporary register as a
source and write the result back to the cache, thus causing a
write to the host. Once an instruction is issued, it cannot be
changed; therefore, the tracking of busy cache entries becomes
necessary. This is necessary to ensure that the required data
is ready to be read and is not still in-flight. If the data
is unavailable, the issue unit blocks. However, it would be
possible to include a set-aside buffer for such operations to
allow ready operations to proceed.

It is generally desirable to use an “aging” policy to deter-
mine how long a value can be reused from the register file
before being written to the cache. One aging policy is simply
to limit the number of times a single target can be written to
the register file before being sent to cache. A better policy is
to allow the issue unit to monitor the status of the queue to
the host. If the queue to the host is empty (or nearly so), then
the issue unit will instruct the ALU to write the result back to
the cache to generate a write to the host. If the queue to the
host is backed up, then the host link is being over utilized, and

it is better to suppress the write by targeting the register file.
It is also possible to provide a policy that is a combination of
these. In all cases, a result is written to the cache if no other
instruction in the lookahead window targets the same address.

This approach fundamentally differs from a timeout in that
it simply provides a view into queued operations, whereas
a timeout is designed to look much further into the future.
The reliance on only queued operations recognizes that there
is only a measurable bandwidth constriction when there is a
queue of operations at the input to the function unit.

B. Resolving Read-after-Write (RAW) Hazards

In many systems, a cache for the atomic unit on the
network interface may create a read-after-write (RAW) hazard.
Specifically, the sequence: 1) perform an atomic operation on
address A, 2) write the result to host memory at address A,
3) evict address A from the cache, and 4) perform a second
atomic operation on address A. Step 4 in this sequence will
cause a host memory read after the host memory write from
step 3. If those operations are temporally close, it is possible
(even likely) for the read access to pass the previous read. This
situation can easily occur with pipelined I/O interfaces that do
not guarantee ordering of requests.

The solution to this problem involves a unit to buffer host
writes until they have completed to host memory. This buffer
works as a secondary cache structure. The purpose of this
buffer is to ensure that writes to host memory complete to a
level of the memory hierarchy where ordering is guaranteed
before a read or write to/from the same address is issued. This
secondary structure is then checked after a cache miss, before
a read or write is issued. There are two main approaches to
managing this buffer. The first approach is to require that the
host bus interface return an acknowledgment when the write
request has completed to a level of hierarchy that preserves
request ordering. When the acknowledgment is received, the
item can be deleted from the buffer. The second approach is
to request a flush from the host bus interface (this is available
on most interfaces). This flush would only return when all
outstanding requests completed. In this scenario, it is not
possible to track when individual writes complete; thus, only
evicted items are placed in this buffer. When the buffer is full,
a flush request is issued and the buffer is emptied. The first
approach is generally preferred, as it requires a smaller buffer
to provide good performance.

C. Pipelining

To sustain high performance under certain workloads (those
that primarily miss in the cache, such as the HPCC Ran-
domAccess benchmark), it is critical that the function unit
and cache be pipelined to maintain a sufficient number of
outstanding accesses to host memory to cover the round-trip
latency. Pipelining of accesses to the host begins with the
issue unit providing a stream of address requests to the cache.
When a cache miss is encountered, the cache must forward
the request to the host interface and attempt to service the
next request. The issue unit associates a tag with each cache



request, allowing the results to be returned out-of-order, and
making it possible for processing to continue on operands
that hit in the cache. This is key to allowing enough host
requests to be in-flight in the case where cache hits and
misses are interspersed. Although the cache results can be
returned out-of-order, instructions are issued to the function
unit in-order. Depending on the ordering constraints imposed
on the atomic operations, this could be relaxed and instructions
could be issued out-of-order, but this would also increase the
complexity of the atomic unit.

IV. METHODOLOGY

This work is based on the Structural Simulation Toolkit
(SST) developed by Sandia National Laboratories and the
University of Notre Dame[27], [15]. SST integrates the
SimpleScalar[28] processor simulation into a hybrid discrete
event and cycle-driven simulation infrastructure. This allows
us to integrate relatively coarse-grained network interface
models with relatively fine-grained processor simulations. To
better replicate system behavior, SST adds a robust memory
model, including the ability to memory map I/O devices, to
the traditional SimpleScalar environment. SST has also been
extended to model a HyperTransport I/O interface that allowed
us to model both a Cray XT3 supercomputer[27] and a similar
system exploring hardware support for PGAS[15].

TABLE I
PROCESSOR PARAMETERS

Parameter CPU
Clock Frequency 2 GHz
Cores per Node 2
Fetch Queue 4
Issue Width 8
Commit Width 4
RUU Size 64
Integer Units 4
Memory Ports 3
L1 (Size/Assoc.) 64KB/2
L2 1MB/16
ISA PowerPC
Main Memory Bandwidth 6.4 GB/s peak
Main Memory latency 140-160 cyc.
System I/O HyperTransport
I/O Bandwidth 2.3 GB/s/dir sustainable
I/O Latency 250 ns

TABLE II
NETWORK PARAMETERS

Topology 3D Torus
Clock Frequency 500 MHz
Link Bandwidth (Peak) 4 GB/s/dir
Router Latency 50 ns
Link Overhead 15%
Router Arbitration Round-Robin
Router VCs 4

To study the performance of collective operations, we used
the model of a SHMEM network interface from [15]. Tables I
and II are replicated here to present the salient properties of

the processor and network models. The HyperTransport (HT)
interface is modeled as a 2.3 GB/s per direction link, before
accounting for the “header flit” of each HyperTransport packet,
based on tuning done for [27]. Similarly, the baseline latency
of the HyperTransport interface is modeled as 250 ns, based
on measured hardware performance. The host processor runs
at 2 GHz and the network interface at 500 MHz. Both match
the points validated in previous work [27].

Like the previous work, the router models synchronous links
(8 bytes wide, 500 MHz) and accounts for the difference
in peak bandwidth by adjusting the overhead (15% modeled
versus the 24% protocol overhead seen in the real system).
Finally, the virtual channel architecture (two virtual channel
classes each having two virtual channels) is modeled along
with round-robin arbitration.

This work explored two basic benchmarks. The first was a
simple atomic benchmark. This benchmark used applications
of N PEs, where N−1 PEs target PE0 with atomic operations.
Each PE issued 1000 atomic operations, with either all atomics
for all PEs targeting a single memory location or each PE
targeting 16 unique memory locations, and then synchronized
before completing the timing test. In the first case, this meant
that all atomic operating at the target were to a single memory
location. In the second case, this led to (N −1)×16 different
memory location targets. The first variant of the benchmark is
meant to mimic the type of behavior that might be seen when
a single variable is highly contested for a scenario such as a
lock, while the second variant is designed to show what may
occur when there is less contention over the single memory
location.

For RandomAccess benchmark, the baseline that was used
was the work performed in [15]. This implementation lever-
aged the high performance SHMEM implementation to send
updates to their respective processors and then used the pro-
cessor to perform the local update. A second implementation
was created using an 8 byte atomic XOR command to explore
the improvements available with a hardware atomic unit.

V. RESULTS

A variety of configurations were explored to assess the
performance potential of an atomic unit on the NIC. For each
benchmark (the focused atomic benchmark and the Rando-
mAccess benchmark), various design points were explored
to determine whether the atomic unit should have a cache,
how large that cache should be, and what its configuration
should be. In addition, the impact of HyperTransport (HT)
latency was explored as well as the impact of HT “tags”.
In this case, “tags” refer to the identifiers used to track
the outstanding transactions (and, therefore, the number of
outstanding transactions) that the NIC can have on the HT link.
For each scenario, the performance is presented in “MegaBytes
per Second”. Each update is 8 bytes, so the update rate can
be inferred from the data rate.
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A. Atomic Unit Performance

The performance of the atomic unit was assessed based on
two variants of a benchmark where all nodes but one target a
single node. The first variant has all accesses target a single
address, which is meant to mimic a highly contended lock
variable. The second variant exposes more concurrency to
the atomic unit by having each source node target 16 unique
locations, so that there is no contention for a single address
among the nodes and even the contention from a single node
is limited. For the sake of comparison, all of the graphs in this
section use the same scale.

In Figure 2, we see the performance the atomic unit for a
64 PE1 system (32 dual-processor nodes) when absolutely no
cache is provided. Thus, even if two sequential accesses are
in the queue on the NIC, and both target the same memory
address, the first update will be performed and written back
to memory and then the second update will read the data
from memory to perform the update. When all updates target
a single location, this results in very poor performance indeed
(the bottom line in the graph), as each update incurs the
round-trip latency across the HT bus. In contrast, when more
concurrency is available, because each source PE targets a
variety of different memory addresses (the other three lines),
the atomic unit can have substantially more requests pipelined
to hide much of the bus latency.

Two important parameters are varied in Figure 2. First,
along the X-axis, the latency of the HT bus is varied from
50 ns — an aggressive design point — to 250 ns — the value
determined in [27]. The value of this latency has a substantial
impact on the concurrency needed to hide the latency. The
second important parameter varied in Figure 2 is the number
of tags — or outstanding requests — that HT is allowed to
have. The “typical” value for tags in a real HT implementation
is 32, which is acceptable for the lowest latency scenario.
At higher latency, 64 tags is clearly sufficient (the 64 and
128 lines completely overlap); however, at a 250 ns latency, a
secondary bottleneck clearly constrains performance. We are

1All system sizes tested yielded the same performance.

currently exploring where this bottleneck lies.
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Fig. 3. The performance of an atomic unit with a cache

In Figure 3, a small cache (32-item, direct- mapped) is
introduced in the atomic unit. This results in a substantial boost
in the performance of the scenario where all incoming mes-
sages target a single memory location. In fact, the performance
reaches the limit of the network bandwidth (a 48-byte message
carrying 8 bytes of data results in a maximum atomic payload
rate of 1

6 of the maximum data rate. In stark contrast, the
small cache offers only minimal benefit to the case where each
node targets an array of unique addresses. This phenomena
occurs because the substantial number of unique addresses
being targeted causes most operations to miss the cache. For
example, even at 8 PEs, 112 unique locations are targeted
(7 PEs targeting 16 unique addresses each). Furthermore, the
direct mapped nature of the cache makes it likely that two
items will conflict for a cache line. Much like in a processor,
when this scenario occurs, further accesses are blocked while
the first access is serviced and then consumed. The second
access must wait for the cache line to become available to
provide a location for a returning request to be written.

To explore the impact of the size and configuration of
the cache on the performance of the atomic unit, Figure 4
varies both the size (in lines) and the associativity of the
cache2. The cache size is along the X-axis to highlight the
impact of cache size, while the various lines represent varying
levels of contention based on the number of PEs used and
the associativity of the cache. Overall, Figure 4 suggests that
increasing the associativity of the cache is more important than
increasing the size of the cache; however, there is a disturbing
trend in the lines that suggest that the cache size needs to
continue to grow with system size. Fortunately, this is not
actually the case for two reasons.

Despite the appearances of Figure 4, the size of the cache
does not inherently need to be linked to system size. Instead,
the results can be explained by two phenomena. First, the
number of addresses targeted by these tests is artificially large

2Note that the 32 line, 64-way caches are shown as “zero” performance,
because that case is not possible
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Fig. 4. The performance of an atomic unit using a cache of variable sizes
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to facilitate exploring issues related to scaling. Applications
are more likely to either target a large number of addresses
(and, thus, look more like the RandomAccess results in
Section V-B) or a much smaller number of addresses related
to synchronization. In the latter case, which is the point of
Figure 4, the number of synchronization variables on a given
target PE is likely to be related to system size, but not linear
with system size as illustrated here. Unfortunately, it is not
practical for us to simulate systems of very large scale, so the
linear growth in target addresses was used to explore issues
of contention in an attempt to mimic systems of much larger
size.

The primary reason for the performance issues seen in
Figure 4, however, are explained by Figure 53. On the simu-
lated system, the performance of the network interface is well
matched to the performance of the HyperTransport interface;
thus, as long as there is sufficient concurrency to tolerate the
latency of the HT link, it should be possible to sustain the
full bandwidth of the network. In Figure 4, the full bandwidth
of the network is only sustained when many of the atomic
updates hit in the cache. Cache misses may occur due to
evictions forced by conflict due to limited associativity or
due to capacity based evictions; however, even with frequent

3Again, note that the “zero” performance of the 32 line, 64-way cache is
due to the fact that this configuration is impossible.

cache misses, it should be possible to sustain most of the
network bandwidth as long as concurrency is not constrained.
In Figure 3, we saw concurrency constraints from the direct
mapped nature of the cache; however, the contrast between
Figure 4 and Figure 5 makes it clear that the number of
HT tags available can also reduce concurrency and constrain
performance. Figure 5 clearly indicates that even a relatively
small cache can sustain most of the network performance, as
long as there are not artificial constraints on concurrency.
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B. RandomAccess Performance

The RandomAccess benchmark has very different properties
from the atomic benchmarks created for this study. Whereas
the atomic benchmark mimics a small number of widely
used variables, the RandomAccess benchmark is true to its
name and accesses random locations on all of the nodes. Due
to these properties, atomic updates from the RandomAccess
benchmark never hit in the cache.

Figure 6 shows the performance of the RandomAccess
benchmark when using (a) 32 and (b) 64 HT tags. In addition,
the graphs show two sizes of caches (32 and 128 lines) as well
as three associativities (direct mapped, 4-way, and 16-way).
Since the RandomAccess benchmark cannot leverage cached
data, the configurations explored were chosen for either their
simplicity of implementation (32 lines, direct mapped) or their
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Fig. 6. The performance of the RandomAccess benchmark using a cached
atomic unit with (a) 32 HT tags and (b) 64 HT tags

success on the atomic benchmark in Section V-A. Unlike the
benchmark used for Section V-A, the RandomAccess bench-
mark is sufficiently random that a 4-way cache is sufficient
(4-way and 16-way configurations overlap). In addition, 128
lines is adequate to keep enough outstanding requests to HT.
Once again, the need for 64 HT tags is evident, even though
32 tags is what is actually provided in an HT implementation.

Since the RandomAccess benchmark does not gain anything
from the use of a cache, Figure 7 presents the performance for
the RandomAccess benchmark when a cache is not present.
In stark contrast to Figure 2, the RandomAccess benchmark
suffers no performance penalty when a cache is not present.

Perhaps the most interesting, and most surprising, data is
the comparison of the best simulated RandomAccess bench-
mark using atomics and our previous work simply using
SHMEM[15]. Figure 8 clearly indicates that the SHMEM-
based approach outperforms the atomic unit-based approach.
This is because of bandwidth constraints imposed by the
atomic-based approach, as we will see in Section VI. No-
tably, however, the RandomAccess benchmark is substantially
different from the simple atomic benchmark, because all of
the targets are also injecting requests and the traffic is very
load balanced. Note, however, the advantage for the SHMEM
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atomic unit
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approach in Figure 8 only occurs when the host memory
interface has a sufficient performance advantage over the
NIC interface to essentially overlap updates with network
traffic arriving. It is also present only when the rate of small,
SHMEM style messages is as high as the rate of atomic
operations provided by the NIC.

VI. ANALYSIS

Several factors impact the RandomAccess performance re-
sults shown in Section V-B. While the cost of simulation
prohibits the exploration of all conceivable factors that impact
system performance, we can use analysis to explore the
implications of some of the other system-level limitations.
This section presents an analytical exploration of two major
contributors to system performance.

A. Bandwidth-Based Comparison of NIC-Based RandomAc-
cess to Baseline

As modeled, each command to the network interface re-
quires 32 bytes of data to cross the HT interface. Each request
(read or write) to the host requires 16 bytes, and each response
from the host requires 12 bytes. Thus, the data that crosses the



interface between the NIC and the Host for each update when
using the baseline (SHMEM message based) approach is:

NICtoHost = 16B(writeback) (1)
HosttoNIC = 32B(command) (2)

as the SHMEM-based approach is unidirectional from the
NIC’s perspective (i.e. commands are pushed from the host to
the NIC and messages from the NIC to the host. In contrast,
the NIC must read the data to update from the host, which
yields:

NICtoHost = 8B(readrequest) + 16B(writeback) (3)
HosttoNIC = 32B(command) + 12B(readresponse) (4)

This bandwidth requirement then constrains the rate at which
a node can generate updates to:

RandomAccessRate ≤ BWHT

max (NICtoHost,HosttoNIC)
(5)

Considering that we simulated dual-processor nodes (two PEs
per node), the network bandwidth limit is modeled in Figure 9.
Given the evolution of modern processors to typically have
more memory bandwidth than I/O bandwidth, this will often
be the primary constraint (as it is for the system modeled),
though it is always important to consider the overall system
balance. The results in Figure 9 are only meaningful for a
memory bandwidth to I/O interface bandwidth ratio that is
sufficient and for a network interface where small SHMEM
style messages are as fast (message rate) as the hardware
atomic unit.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

8 16 32

P
er

fo
rm

an
ce

 (
G

U
P

S
)

PEs

Message Based
Best Simulated Atomic Based

Network Bandwidth Limit on Message Based Perf.
Network Bandwidth Limit on Atomic Based Perf.

Fig. 9. Theoretical peaks for the RandomAccess benchmark

B. Outstanding Requests Required

As noted earlier, the high latency of the system modeled
requires more outstanding requests than are typically used by

an HT node ID4. This is another substantial difference between
the baseline and atomic-based approaches: the atomic-based
approach performs reads and writes across the HT interface
and therefore needs substantially more outstanding requests.
The required number of requests (i.e. the HT “tags” referred
to earlier) can be calculated as:

Requests = RandomAccessRate×(RdLat+WrLat+MemLat)
(6)

Based on the size of requests and the data rate modeled,
the RandomAccessRate for a single node is 52 million per
second. For the latencies modeled (including a 70 ns memory
latency), this requires the number of outstanding requests
shown in Table III.

TABLE III
REQUESTS FOR RANDOMACCESS TRAFFIC BASED ON LATENCY

RdLat/WrLat Request
500 ns / 250 ns 43
300 ns / 150 ns 27
100 ns / 50 ns 11

Note that the values in Table III are very much impacted
by the traffic pattern. As seen earlier in Figure 2, a node
that is only the target of atomic updates clearly needs more
tags. This is because, for a node that is not generating traffic,
the HosttoNIC traffic only consists of read responses (12
bytes). This means that the AtomicAccessRate in an equation
analogous to Equation 6 would be over 95 million per second,
and would actually be throttled by the network rate of 83
million per second. Thus, the requests needed are shown in
Table IV. Comparing this theoretical calculation to the results
in Figure 2, there is clearly a secondary limitation in the
system performance as noted in Section V-A.

TABLE IV
REQUESTS AT THE TARGET FOR ATOMIC UNIT TRAFFIC BASED ON

LATENCY

RdLat/WrLat Request
500 ns / 250 ns 69
300 ns / 150 ns 44
100 ns / 50 ns 19

VII. CONCLUSIONS

The support for hardware atomic units on the network
interface have the potential to bring interesting new capa-
bilities to systems based on commodity processors. They
have the potential to dramatically improve the performance
of PGAS programming models, including languages such as
UPC and Co-array Fortran, by providing the building blocks
needed for a variety of synchronization operations. This paper
has explored the hardware required to support two basic

4A single NIC can hypothetically have more than one node ID, but this
does pose ordering challenges.



usage models: many nodes targeting shared synchronization
variables and all nodes performing random updates across the
machine — specifically, the HPCC RandomAccess (or GUPS)
benchmark.

The results in this paper highlight four very important
facts about the design of an atomic unit for the network
interface. First, some level of caching is critical if reasonable
performance is going to be achieved when targeting a single
variable. Otherwise, there is not sufficient concurrency in the
access stream. Second, when targeting an array of memory
locations, the size and structure of the cache can be critical. A
cache that is too small or has too little associativity can rapidly
lead to substantially lower performance due to the conflicts
in the cache that limit the achievable concurrency in the
request stream to the host processor. Third, the access pattern
of the RandomAccess benchmark does not require a cache,
because it provides sufficient independent accesses to enable
abundant concurrency over the HT interface; however, if a
cache is provided, it too needs to have a reasonable size and
associativity. Finally, in many scenarios, a hardware atomic
unit on the NIC will not benefit the rate of system wide random
accesses, because it requires more data to traverse the link to
the host processor. While the use of an atomic unit in real
workloads similar to the HPCC RandomAccess benchmark
is likely to provide substantial benefits through things such
as offloading work from the processor, such features are not
captured in the benchmark and, therefore, are not apparent in
this study.

VIII. FUTURE WORK

Atomic units on the network interface have been proposed
for a variety of purposes. In addition to the types of opera-
tions discussed here, some in the community have requested
floating-point operations on the network interface. In future
work, we plan to study how floating-point atomic operations
could be used for a variety of purposes, including accelerating
collective operations.
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